О ЗАКОНОМЕРНОСТИ ОТМИРАНИЯ КЛЕТОК В РАЗМНОЖАЮЩИХСЯ КУЛЬТУРАХ СИНЕ)ЗЕЛЕНЫХ ВОДОРОСЛЕЙ ANABAENA VARIABILIS И AMORPHONOSTOC PUNCTIFORME

Наблюдения за содержанием живых клеток с помощью трифе5 нил5тетразолийхлорида (ТТХ) в чистых культурах сине5зеленых во5 дорослей Anabaena variabilis и Amorphonostos punctiforme, развивающихся на минеральных средах, обнаружили, что во время лаг5фазы роста урожай водорослей слегка падал, процент содержа5 ния живых клеток в культурах повышался (табл. 1, рис. 1).

Таблица 1

ИЗМЕНЕНИЕ СОДЕРЖАНИЯ МЕРТВЫХ КЛЕТОК В РАЗВИВАЮЩИХСЯ КУЛЬТУРАХ СИНЕЗЕЛЕНЫХ ВОДОРОСЛЕЙ ANABAENA VARIABILIS И AMORPHONOSTOC PUNCTIFORME

Возраст культуры в днях

Anabaena variabilis

Amorphonostoc punctiforme

опыт № 1

опыт № 2

опыт № 1

опыт № 2

а

б

а

б

а

б

а

б

0

31

63

111

22

46

51

53

51

2

27

23

35

44

48

41

3

77

11

4

106

17

4

106

17

68

4

6

153

25

8

95

24

71

21

92

5

11

135

33

162

35

110

92

5

11

135

33

162

35

110

26

120

13

14

150

41

132

31

140

21

17

160

44

20

163

58

155

65

167

61

21

173

58

Примечание: а – урожай водорослей в миллиграммах сухого веса биомассы на 1 л среды;

б – содержание мертвых клеток в процентах.

При микроскопировании культуры, находящейся в начале лаг5фазы роста, наблюдаются скопления деструктурированных, потерявших кон5 туры, автолизирующихся клеточных остатков, слипшихся в массы, напоминающие виноградные гроздья. При добавлении к среде ТТХ в скоплениях часто обнаруживаются короткие цепочки из целых клеток с кристаллами формазана, в то время как сама масса скоплений никог5 да не содержит таковых. Это хорошо согласуется с предположением,

Рис. 1. Корреляция между процентом живых клеток (а) и динамикой биомассы (б) в развивающихся культурах сине)зеленых водорослей

 

что в лаг5фазу роста автолизируются только мертвые клетки, внесенные в среду с инокулятом. К концу лаг5фазы гроздья клеточных остатков окончательно автолизируются и расплываются, что немедленно вызы5 вает падение биомассы и подъем процентного содержания живых кле5 ток в культурах водорослей. Во время логарифмической фазы на фоне роста биомассы водорослей процент живых клеток падает по довольно характерной кривой (табл. 1, рис. 1). Эта зависимость оказалась со5 вершенно неожиданной и требовала объяснений. Поскольку процент5 ное содержание является величиной относительной, для истолкования наблюдаемой корреляции было сделано следующее допущение: в каж5 дую генерацию размножающихся культур сине5зеленых водорослей от5 мирает приблизительно постоянный процент клеток. Далее мы вывели уравнение кривой, которому отвечает сделанное допущение.

Рис. 2.

Пусть в исходный момент t=0 общее количество клеток равно N. Пусть – доля отмирания клеток каждой генерации. Для простоты будем считать =const. Пусть а – число актов удвоения клеток в единицу времени. Тогда спустя t времени после начала процесса ве5 личину K=t/a можно рассматривать как число актов деления, про5 исшедших за время t. Составим следующую таблицу (см. табл. 2).

Таблица 2

К

n

Число мертвых клеток, Nм

Числоживых клеток, Nж

0

1

1

2

2

3

3

4

Легко видеть, что количество живых клеток в любой момент вре5 мени равно соответствующему члену геометрической прогрессии со знаменателем , первым членом и n=K+1:

(1) Общее число мертвых клеток к любому моменту времени равно

сумме членов геометрической прогрессии с тем же знаменателем и первым членом

(2)

 

Обозначим и. Тогда формулы (1) и (2)

примут вид:

(1a) (2a)

 

Общее количество клеток после К делений равно сумме живых и мерт5вых клеток ко времени t, прошедшего с начала опыта

(3)

и. Тогда формулы (1) и (2)

примут вид:

(1a) (2a)

 

Общее количество клеток после К делений равно сумме живых и мерт5вых клеток ко времени t, прошедшего с начала опыта

(3)

 

 

Подставим в это уравнение ; тогда

(5)

Так как доля мертвых клеток не может быть больше единицы, из формулы (5) следует, что процесс образования живых клеток пре5 кратится при условии или .

Представим зависимость (t) из формулы (4) графически (рис. 2,

кривая А).

Пусть сделанное допущение о постоянстве доли отмирающих кле5 ток в каждой генерации неверно, тогда биологически оправдан раз5 бор двух возможных вариантов:

1). При размножении клеток в культурах вовсе не образуется но5 вых порций мертвых клеток, а лишь присутствует та часть, которая попала в сре5ду вместе с инокулятом. Тогда графически это изобра5 зится кривой В (рис. 2), которая будет падать за счет «разбавления» числа внесенных мертвых клеток размножающимися живыми.

2). При размножении клеток , но закономерно изме5 няется со временем. Тогда может либо возрастать, либо падать. Допущение, что изменяется хаотически, не имеет биологического смысла. Если возрастает, то при достижении значения = 0,5 прирост живых клеток закончится, а при > 0,5 культура отомрет. В этом случае процесс прироста мертвых клеток можно изобразить кривой С, стремящейся к единице при

.

Если падает, то процент мертвых клеток будет падать при при5

росте биомассы, стремясь к нулю по кривой D (рис. 2) при

, но закономерно изме5 няется со временем. Тогда может либо возрастать, либо падать. Допущение, что изменяется хаотически, не имеет биологического смысла. Если возрастает, то при достижении значения = 0,5 прирост живых клеток закончится, а при > 0,5 культура отомрет. В этом случае процесс прироста мертвых клеток можно изобразить кривой С, стремящейся к единице при

.

Если падает, то процент мертвых клеток будет падать при при5

росте биомассы, стремясь к нулю по кривой D (рис. 2) при

и условии, что начинает падать с момента t1, либо по кривой В, если падает с момента t = 0.

Если сделанное допущение приблизительно верно и количество отми5рающих клеток прямо пропорционально количеству живых клеток к любому моменту времени, то самым важным условием яв5 ляется достижение плато на графике при. Можно утвер5 ждать, что любая стабилизация величины во времени в ходе экс5 перимента может быть истолкована только сделанным допущением с той лишь поправкой, что не строго, а приблизительно посто5янна при прочих равных условиях (температура, рН среды, питание и т. д.). Но учитывая длительность периода наблюдения, действитель5 ное значение , по5видимому, все время достаточно близко к своему среднему значению.

Рис. 3. Изменение процентного содержания мертвых клеток в развивающихся культурах Anabaena (I, II) и Amorphonostoc (III, IV). I, III – опыт № 1; II, IV – опыт № 2

На рис. 3 представлены данные табл. 1 по изменению процента мертвых клеток в динамике развития водорослей. Для сравнения на этом же рисунке изображены две кривые, вычерченные по формуле (4), где выбрано произвольно (0,1 и 0,2 или 10 и 20%). Сравнение рис. 3 и 2 показывает, что полученные кривые более или менее точно (насколько это возможно в биологическом эксперименте) совпадают между собой по характеру, достигая плато к определенному време5 ни – окончанию логарифмической фазы роста культуры. Это можно истолковать только в плане справедливости сделанного допущения,

а именно: в ходе логарифмической фазы в размножающихся куль5 турах сине5зеленых водорослей Anabaena variabilis и Amorphonostoc punctiforme в каждый момент времени отмирает приблизительно постоянная доля от общего числа живых клеток. Каким образом можно объяснить механизм Далее, в ходе интен5 сивного прироста биомассы водорослей происходит падение про5 центного содержания живых клеток вследствие отмирания приблизи5 тельно постоянной.

Установленные закономерности были получены на сине5зеленых водорослях, однако, вполне вероятно, что в той или иной степени они могут быть выражены и при размножении других одноклеточ5 ных организмов.

Приношу благодарность Б. Д. Сумму за помощь в выполнении работы.

Литература

Гусев М. В., Федоров В. Д. Микробиология, 31, № 3, 1962.

ДАН, 144, № 6, 1962.

_II

II_

01

+ 2

1

b. t 1}

Mq11W. ICII. •% om o6 GU: Ja It MOMG11f’ tt2S%

2 \

01 I

 

0J,2} :I

• 3 1+1

01 I

02 I

01

t I

•3 I

01 I

02 I

01 \

02 ..

01 2+2

03 1

01 I

02

01 I

J,2 :

01 1

3 I

01 I

02

01 I

031

02

01

02

01

3

01

81

I

"

3KAIOifMIIIIISJ’ t 4 35%

I

I I

I I I I

Puc. 4. IIpe. n;rroJio uTeJibHaH cxeMa OTMupaHuH KJieTOK B KYJibTypax cuHe3eJieHbiX Bo. n;opocJieu

19

II

II

СИНЕ)ЗЕЛЕНЫЕ ВОДОРОСЛИ И ЭВОЛЮЦИЯ ФОТОСИНТЕЗА

Введение

Несмотря на многолетние и многочисленные исследования жизне5 деятельности самых различных видов сине5зеленых водорослей, их филогенетическое положение в системе растительного царства до сих пор во многом неясно. Правда, в настоящее время уверенно можно уже сказать, что сине5зеленые водоросли, следуя непосредственно за царством бактерий, дали начало всем остальным растительным орга5 низмам, осуществляющим фотосинтез с выделением молекулярного кислорода. Но мы не располагаем пока достаточными сведениями, чтобы решить, какая именно группа водорослей произошла от Cyano5 phyta. Мнение ряда исследователей (Kylin, 1944; Dougherty, Allen, I960; Гудвин, 1961), согласно которому сине5зеленые водоросли дали начало багрянкам (Rhodophyta), покоится исключительно на данных о близком сходстве их пигментов, участвующих в фотосинтезе, и поэтому требует дополнительных доказательств.

С другой стороны, накопился, по5видимому, достаточный для обобщений материал, который позволяет конкретно указать на груп5 пы микроорганизмов, давших начало сине5зеленым водорослям.

В настоящей работе обсуждаются особенности фотосинтетичес5 ких аппаратов сине5зеленых водорослей и филогенетически пред5 шествующих им бактерий, утверждающие их эволюционное родство.

История вопроса

Впервые на эволюционное родство сине5зеленых водорослей и зе5 леных серобактерий указали в 1925 г. Гейтлер и Пашер (Geitler, Pascher, 1925). На основании многочисленных морфологических ис5 следований и визуального наблюдения за окраской большого числа зеленых микроорганизме Гейтлер и Пашер выделили особую таксо5 номическую группу Chlorobacteriaceae — Cyanochlorodinae, вклю5 чившую в себя желто5зеленые (бактерии) и сине5зеленые (водоросли) формы. Введение такой таксto;mso-break-type:section-break’>

Puc. 4. IIpe. n;rroJio uTeJibHaH cxeMa OTMupaHuH KJieTOK B KYJibTypax cuHe3eJieHbiX Bo. n;opocJieu

19

II

II

СИНЕ)ЗЕЛЕНЫЕ ВОДОРОСЛИ И ЭВОЛЮЦИЯ ФОТОСИНТЕЗА

Введение

Несмотря на многолетние и многочисленные исследования жизне5 деятельности самых различных видов сине5зеленых водорослей, их филогенетическое положение в системе растительного царства до сих пор во многом неясно. Правда, в настоящее время уверенно можно уже сказать, что сине5зеленые водоросли, следуя непосредственно за царством бактерий, дали начало всем остальным растительным орга5 низмам, осуществляющим фотосинтез с выделением молекулярного кислорода. Но мы не располагаем пока достаточными сведениями, чтобы решить, какая именно группа водорослей произошла от Cyano5 phyta. Мнение ряда исследователей (Kylin, 1944; Dougherty, Allen, I960; Гудвин, 1961), согласно которому сине5зеленые водоросли дали начало багрянкам (Rhodophyta), покоится исключительно на данных о близком сходстве их пигментов, участвующих в фотосинтезе, и поэтому требует дополнительных доказательств.

С другой стороны, накопился, по5видимому, достаточный для обобщений материал, который позволяет конкретно указать на груп5 пы микроорганизмов, давших начало сине5зеленым водорослям.

В настоящей работе обсуждаются особенности фотосинтетичес5 ких аппаратов сине5зеленых водорослей и филогенетически пред5 шествующих им бактерий, утверждающие их эволюционное родство.

История вопроса

Впервые на эволюционное родство сине5зеленых водорослей и зе5 леных серобактерий указали в 1925 г. Гейтлер и Пашер (Geitler, Pascher, 1925). На основании многочисленных морфологических ис5 следований и визуального наблюдения за окраской большого числа зеленых микроорганизме Гейтлер и Пашер выделили особую таксо5 номическую группу Chlorobacteriaceae — Cyanochlorodinae, вклю5 чившую в себя желто5зеленые (бактерии) и сине5зеленые (водоросли) формы. Введение такой таксономической группы основывается на попытке представить Chlorobacteriaceae — Cyanochlorodinae, как бо5 ковую ветвь различных Cyanophyta, а также на наблюдении, что

«желто5зеленые и бледно5зеленые формы связываются через все воз5 можные переходные оттенки с явно сине5зелеными типами». Однако Гейтлер и Пашер указывали, что «дальнейшие исследования дадут возможность расчленить Chlorobacteriaceae — Cyanochlorodinae на отдельные естественные компоненты». Позднее Прингсгейм (Prings5

heimJ 1949, 1953 а, в) действительно нашел, что значительная часть| организмов, отнесенных Гейтлером и Пашером к группе «зеленых бактерий», являются на самом деле сине5зелеными водорослями. Но все же установление Гейтлером и Пашером смешанной таксоно5 мической группы заключало в себе важное в эволюционном отноше5 нии следствие. Сближая сине5зеленые водоросли с зелеными серобак5 териями, оно подчеркивало их филогенетическую близость.

Шесть лет спустя после выхода работы Гейтлера и Пашера блес5

тящими экспериментами Ван Ниля (Van Niel, 1931),; было доказано физиологическое сходство зеленых (сем. Chlorobacteriaceae) и пур5 пурных (сем. Thiorhodaceae, Athiorhodaceae) фотосинтезирующих бактерий, после чего их эволюционное родство стало очевидным.

Таким образом, были высказаны первые соображения родстве

сине5зеленых водорослей и фотосинтезирующих бактерий, позво5 лившие постулировать филогенетическую цепь:

пурпурные бактерии зеленые бактерии

Такой способ изображения качественно отражает две принципи5 ально важные стороны осуществляемых организмами превращений. Левая часть схемы отражает темновые процессы синтеза клеточных компонентов (условно изображенных как СaНbСc) из различных уг5

леродсодержащих соединений среды — углекислоты, органических

кислот (R–СООН), спиртов. (R–ОН) и углеводов (СnН2nОn) за счет

«ассимиляционных сил» клетки — аденозинтрифосфорной кислоты

(АТФ) и восстановленных пиридин5нуклеотидов (ПН — Н). Пра5 вая часть отражает процессы, связанные со световыми реакциями фотосинтеза, в ходе которых соединения серы окисляются до суль5 фата (фотосинтез серобактерий) или вода до молекулярного кисло5 рода (фотосинтез растений), что сопровождается накоплением

«ассимиляционных сил» клетки — АТФ и ПН—Н.

Рассмотрение схемы обнаруживает тенденцию к сужению спект5 ра соединений, вовлекаемых в конструктивные процессы синтеза

сравниваемых организмов, в направлении пурпурные и. зеленые серобактерии сине5зеленые водоросли все прочие фотосинтези5 рующие растения. В соответствии с развитыми нами представления5 ми о принципах, определивших направление биохимической эволюции на нашей планете, можно полагать, что падение гетеротрофноcти в указанном ряду является следствием стабилизации конвергентных путей конструктивных процессов синтеза, которое в конечном счете привело к истинному автотрофизму. Таким образом, наиболее древ5 ними следует считать пурпурные и. затем зеленые бактерии, которые дали начало сине5зеленым водорослям, а последние, в свою очередь, – всему остальному растительному царству.

С другой стороны, если высказанное предположение об эволюци5 онном родстве фотосинтезирующих бактерий и зеленых водорослей верно, нужно признать, что именно Сyanophyta в ходе эволюционно5 го усложнения фотосинтетического аппарата впервые приобрели ме5 ханизм, освобождающий молекулярный кислород из воды. Появление кислорода в атмосфере сделало возможным возникновение и совер5 шенствование аэробных форм жизни на нашей планете.

Возникновение механизма, освобождающего кислород из воды, выдвинуло на передовой рубеж исследований проблему фотолиза воды, – загадку фотохимического механизма растений, которая тре5 бовала ответа на вопросы: имеет ли место фотолиз воды в бактери5 альном фотосинтезе; если «да», то почему в ходе бактериального фотосинтеза не выделяется кислород; если «нет», то с каким усо5 вершенствованием фотохимического аппарата растений связана спо5 собность фотолитического разложения воды.

Фотолиз воды и бактериальный фотосинтез

В 1941 г. одновременно А. П. Виноградов и Р. В. Тейс (1941) и Рубен с сотрудниками (Ruben a. oth., 1941) показали в опытах с меченым кислородом, что процент О18 в образующемся в ходе фото5 синтеза кислороде всегда равен его проценту в воде и не зависит от концентрации его в карбонате. Таким образом, экспериментально было доказано наличие фотолиза воды в фотосинтезе, сопровождающемся выделением кислорода.

С другой стороны, хорошо известно, что в случае бактериального фотосинтеза процесс выделения кислорода, по5видимому, заменяется окислением соединений серы. На основании бросающегося в глаза сход5 ства уравнения классического фотосинтеза (1) и установленных ста5 хиометрических соотношений между потребленной углекислотой и окисленным сероводородом для фотосинтезирующих бактерий (2, 3):

С другой стороны, если высказанное предположение об эволюци5 онном родстве фотосинтезирующих бактерий и зеленых водорослей верно, нужно признать, что именно Сyanophyta в ходе эволюционно5 го усложнения фотосинтетического аппарата впервые приобрели ме5 ханизм, освобождающий молекулярный кислород из воды. Появление кислорода в атмосфере сделало возможным возникновение и совер5 шенствование аэробных форм жизни на нашей планете.

Возникновение механизма, освобождающего кислород из воды, выдвинуло на передовой рубеж исследований проблему фотолиза воды, – загадку фотохимического механизма растений, которая тре5 бовала ответа на вопросы: имеет ли место фотолиз воды в бактери5 альном фотосинтезе; если «да», то почему в ходе бактериального фотосинтеза не выделяется кислород; если «нет», то с каким усо5 вершенствованием фотохимического аппарата растений связана спо5 собность фотолитического разложения воды.

Фотолиз воды и бактериальный фотосинтез

В 1941 г. одновременно А. П. Виноградов и Р. В. Тейс (1941) и Рубен с сотрудниками (Ruben a. oth., 1941) показали в опытах с меченым кислородом, что процент О18 в образующемся в ходе фото5 синтеза кислороде всегда равен его проценту в воде и не зависит от концентрации его в карбонате. Таким образом, экспериментально было доказано наличие фотолиза воды в фотосинтезе, сопровождающемся выделением кислорода.

С другой стороны, хорошо известно, что в случае бактериального фотосинтеза процесс выделения кислорода, по5видимому, заменяется окислением соединений серы. На основании бросающегося в глаза сход5 ства уравнения классического фотосинтеза (1) и установленных ста5 хиометрических соотношений между потребленной углекислотой и окисленным сероводородом для фотосинтезирующих бактерий (2, 3):

 

для фотосинтеза растений СО2 + 2Н2О (СН20)+О2+Н20; (1)

 

для зеленых серобактерий CО2+2H2S (CH20)+2S + H2O; (2)

 

для пурпурных бактерий 2CO2+H2S+H2O (CH2O)+H2S04 (3)

Ван Ниль (Van Niel, 1931) выдвинул версию, что вода не уча5 ствует в фотохимической реакции бактерий, заменяясь соединения5 ми серы. Однако уже четырьмя годами позже и во всех последующих публикациях. Ван Ниль (1935, 1941, 1949 а, в, 1856) распространил идею фотолиза воды и на бактериальный фотосинтез. Механизм фотосинтеза по Ван

Нилю можно представить следующим образом. Первичная фото5 химическая реакция как для фотосинтеза растений, так и для бакте5 риального фотоситеза состоит в фотолизе воды, т. е. в расщеплении ее на окисляющий (ОН) и восстанавливающий (Н) компоненты.

 

age: AR-SA’>

Первый из них основывается на наблюдениях, согласно которым зеленые, сине5зеленые, красные и бурые водоросли способны адап5 тироваться к фотовосстановлению углекислоты за счет молекулярно5 го водорода, что сопровождается снижением выделяющегося на свету кислорода. По мнению Гаффрона, это указывает на способность «пе5 реключения» фотосинтеза указанных водорослей на бактериальный тип при сохранении основной фотохимической доминанты – фотоли5 за воды. Косвенность довода Гаффрона очевидна, поскольку интер5 претация установленного феномена может быть иной. Например, адаптация в атмосфере водорода активирует гидрогеназу, которая конкурирует с фотохимической системой за первичный акцептор во5 дорода – окисленный пиридин5нуклеотид. Таким образом, гидроге5 наза, с одной стороны, восстанавливая в ходе темповых реакций ПН, тормозит его фотовосстановление, а с другой – сдвигает «шунтовое» равновесие в сторону восстановления фотоокисленных цитохромов, конкурируя со второй фотореакцией (см. ниже).

Второй довод в пользу фотолиза воды, по Гаффрону, покоится на установленном постоянстве квантового выхода, величина кото5 рого не зависит от природы световой реакции и природы окисляе5 мых в ходе фотосинтеза соединений.

Однако кажется более правдоподобным, что близкие квантовые чис5

ла, найденные при фотосинтезе бактерий и фотосинтезе растений (ми5 нимальное квантовое число равно 9), свидетельствуют только об одинаковой потребности в энергии для какого5то фотопроцесса. Со5 мнительно, что этот процесс является фотолизом воды, так как в этом случае пришлось бы признать, что для фотолиза воды в бактериаль5 ном фотосинтезе требуется меньше энергии, чем для фотолиза воды в фотосинтезе растений, поскольку кванты, поглощаемые, например, пур5 пурными бактериями в инфракрасной области, беднее энергией. Поэ5 тому второй довод Гаффрона скорее ставит под сомнение, чем утвер5 ждает возможность фотолиза воды в бактериальном фотосинтезе.

Наконец, известны исследования (Sistrom, Griffiths, Stainier, 1956), результаты которых можно интерпретировать как аргумент против признания фотолиза воды в фотосинтезе, осуществляемом бакте5 риями. Под действием ультрафиолетового света Стениером был по5 лучен устойчивый сине5зеленый мутант пурпурной несерной бактерии Khodopseudomonas sphe roides, не содержащий окрашенных кароти5 ноидоа. Сине5зеленый мутант рос в анаэробных условиях на свету или, как истинный представитель сем. Athiorhodaceae» развивался в темноте при доступе кислорода. Но свет и кислород, действовавшие одновременно, убивали бактерии. Связав это наблюдение с потерей мутантом окрашенных каротиноидов, Стеяиер выдвинул гипотезу, согласно которой каротиноиды, являясь антиокислителями, защища5 ют организм от окисляющего действия кислорода.

Поэтому если бы в анаэробных условиях при фотосинтезе возникал окисляющий компонент (ОН) – продукт фотолиза воды, то бескаро5 тинойдный мутант, беззащитный против молекулярного кислорода, оказался бы столь же беспомощным и против (ОН), химически более активного соединения. Правдоподобнее кажется допущение, что в ходе бактериального фотосинтеза бескаротинойдный мутант в анаэробных условиях не сталкивается с необходимостью защиты от окислителя. Поэтому вряд ли можно рассматривать фотолиз воды как доминанту общего фотосинтетического процесса. Но тогда нужно решить, что же все5таки можно считать доминантой фотосинтеза?

Доминанта фотосинтеза

В 1959 г. Арнон (Arnon, 1959) Выдвинул концепцию, согласно которой главной доминантой в фотосинтезе является не фотолиз воды, как это допускал Ван Ниль, а фотофбсфорилирование, – процесс, общий для зеленых растений и фотосинтезирующих бактерий. По Арнону, превращение энергии света в физиологически используе5 мую энергию химических связей лежит в основе фотохимического процесса, который индуцирует синтез АТФ и восстановление пири5 дин5нуклеотидов. Кроме того, поскольку темновые реакции ассими5 ляций СО2 не приводят к выделению кислорода, фотохимический процесс зеленых растений должен объяснять также и механизм обра5 зования кислорода на свету. Поэтому фотохимический процесс, по Арнону, может быть отражен следующими уравнениями:

 

АДФ + Н3РО4 АТФ

 

2ТПН + 2Н2О + 2АДФ + 2Н2РО4 2АТФ + 2ТПН – Н + О2

(4)

(5)

приводят к выделению кислорода, фотохимический процесс зеленых растений должен объяснять также и механизм обра5 зования кислорода на свету. Поэтому фотохимический процесс, по Арнону, может быть отражен следующими уравнениями:

 

АДФ + Н3РО4 АТФ

 

2ТПН + 2Н2О + 2АДФ + 2Н2РО4 2АТФ + 2ТПН – Н + О2

(4)

(5)

Уравнения (4) и (5) отражают способность хроматофоров бакте5 рий и. хлоропластов растений соответственно к образованию на свету, макроэргических фосфорных связей АТФ, Реакция; (4), при, кото5

рой АТФ является единственным продуктом поглощенной световой энергии, определяется Арноном как циклический тип фотофосфо5 рилирования, а реакция (5), в которой часть световой энергии, по5 глощенной фотоактивным пигментом, используется для образования АТФ, а часть—на, образование фоторедуктанта— ТПН5Н, опреде5 ляется Арноном как нециклический тип фотофосфорилирования. Не вдаваясь в тонкости предложенной Арноном общей схемы фотосин5 теза, которые достаточно пространно в различных вариантах излага5 ются в последних публикациях Арнона, следует подчеркнуть прин5 ципиально важную часть его концепции, связывающую различия между бактериальным фотосинтезом и фотосинтезом растений с раз5 личной природой доноров электронов. По Арнону (1961), у бактерий окисляемыми субстратами являются соединения серы или восстанов5 ленные органические вещества, тогда как у растений донором элект5 ронов становится вода. Таким образом, фотоокисление воды не свойственно для фотосинтеза бактерий и не требуется обязательно для достижения двух основных результатов фотохимического акта – фотовосстановления пиридин5нуклеотидов и образования АТФ.

Перечисленные выше моменты, являясь сильной стороной пред5 ложенной Арноном общей схемы фотосинтеза, тем не менее не убеж5 дают в справедливости выдвинутой им доминанты фотосинтеза – фотофосфорилирования, Действительно, против признания арно5 новской доминанты можно выдвинуть следующие соображения.

Во5первых, в настоящее время хорошо известно, что на свету в хроматофорах бактерий и хлоропластах растений происходит не5 ферментативное окисление цитохромов (Duysens, 1952, 1954 а, в; Smith, 1957, 1959), которые восстанавливаются ферментативно в темноте (Чанс, Нишимура, 1961). Известно также, что на свету (фер5 ментативно?) хлоро5пласты растений (Vishniac, Ochoa, 1952, 1952 a; Duysens, 1954 а, в, 1955) и хроматофоры бактерий (Duysens, Sweep,

1957;,Vernon, 1958 а, в; Duysens, 1959) восстанавливают ТПН и ДПН

соответственно. И, наконец, известен также факт coпряжения на све5 ту окисления цитохромов с восстановлением пиридин5нуклеотидов (Duysens, 1955, 1957; Frenkel, 1958; Vernon, 1959). При этом в ряде работ было показано, что фотовосстановление ДПН бесклеточными

препаратами Rhodospirillum rubrum (Frenkel; 1958; Yem, en, Ash, 1959)

и Chromatium (Ogata, Nozaki, Arnon, 1960) в присутствии янтарной и аскорбиновой кислот не обязательно сопровождается фотофосфо5 рилированием. Но образующийся на свету ПН5Н при наличии под5 ходящего конечного акцептора электронов уже может дать по

«дыхательной цепи» водородного (электронного) транспорта всю энергию, необходимую для синтеза макроэргических пирофосфат5 ных связей. Кроме того, как показали наблюдения Нишимуры (Nishimura, 1962), фотофосфорилирование осуществляется в три

стадии: в ходе nepвой, индуцируемой светом, образуется что5то та5 кое, что в ходе двух последующих темновых стадий экстерифици5 рует неорганический фосфат на АДФ.

Во5вторых, Арнон на 55м Международном биохимическом конгрес5 се (1961) утверждал, что «в соответствии с прежними формулировка5 ми образование АТФ рассматривается как процесс, идущий в ходе переноса электронов между цитохромом и хлорофиллом». Если бы это было так на самом деле, то фотофосфорилирование действитель5 но можно было бы рассматривать как фотосинтетическую доминан5 ту. Но в этом случае фотофосфорилирование должно было бы происхо5 дить всегда, поскольку в ходе первичной фотореакции происходит передача электрона цитохрома хлорофиллу (см. Красновский, 1961); и происходиes’> градиента падения

окислительно5восстановительного потенциала, например от аскор5 биновой кислоты или восстановленного цитохрома к окисленным пиридин5нуклеотидам или флавинам.

При этом фотофосфорилирование происходит, вероятно, только при переносе электрона к фотохимически окисленному цитохрому (вопреки Арнону, который полагает, что оно осуществляется на уча5 стке «цитохром хлорофилл») по одному из двух путей.

Первый путь подразумевает образование «шунта» через сопря5

женную цепь переносчиков водорода (электронов) между фотохи5 мически восстановленным пиридин5нуклеотидом и фотохимически окисленным цитохромом. Этот темновой процесс, соответствующий арноновскому «циклическому фотофосфррилированию», очевидно, тождествен отдельному участку «дыхательной цепи» и объясняет образование АТФ в хроматофорах бактерий и хлоропластах расте5 ний без расходования добавленных извне доноров и акцепторов элек5 тронов по уравнению:

(7) Второй путь определяет наблюдаемые различия между бактери5 альным фотосинтезом и фотосинтезом растений, В случае бактерий

внешние доноры водорода (углеродсодер5жащие соединения — Н2А)

или электронов окисляются через неизвест5 ные посредники и восстанавливают фотоокисленный цитохром, Что сопровождается образованием эстерной ; фосфатной связи согласно реакции

 

(8) В случае растений окисляемым соединением является вода, кото5

рая транспортирует свои электроны на; фотоокисленный цитохром с образованием в конечном счете эстерной фосфатной связи и выде5 лением молекулярного кислорода согласно реакции (9):

(9)

(9a) Уравнения (8) и (9, 9а) связывают различия между фотосинтеза5

ми, осуществляемыми бактериями и растениями, с различной при5 родой донора электронов, участвующих в восстановлении фото5 окисленных цитохромов (см. схему фотосинтеза).

Таким образом, фотолиз воды явился следствием замены в ходе эволюции дефицитных внешних доноров электронов самым распро5 страненным соединением на нашей планете – водой; Но поскольку энергия отдельных квантов, поглощенных фотоактивными пигмен5 тами, слишком мала (30–45 ккал) для возможности образования радикалов воды приходится до5

пускать либо возможность суммации энергии квантов на базе воз5

бужденной молекулы пигмента, либо присоединиться к точке зрения Ван Ниля (1956) о «посредствующей функции энзимов, которые уменьшают энергию активации молекулы воды и приводят к образо5 ванию единиц Е, Н и Е,, ». Точнее говоря, необходимо найти у сине5зеленых водорослей механизм, ответственный за фотохими5 ческое расщепление воды, который отсутствует у фотосинтезирую5 щих бактерий, и дать обоснование его энергетической потенции.

Природа зеленых пигментов и их фотохимическая потенция

В природных условиях (водоемах, почве и т. д.) фотосинтезиру5 ющие бактерии развиваются под покровом водорослей н высших растений, в зоне анаэробиоза н пониженной интенсивности света. Их пигментная система поглощает недоиспользованную энергию све5 та, которую пропускают водоросли и высшие растения (Stanier, Cohen5Bazire, 1957).

Сравнение положения максимумов поглощения фотосинтезирую5

щих бактерий (пурпурных и зеленых) с таковыми сине5зеленых во5 дорослей и высших растений показывает, что максимумы поглощения первых как бы «раздвинуты» за пределы, в которых поглощают вто5 рые (рис. 1). Если признать, что смещение максимумов поглощения носит эволюционноприспособительный характер, то в качестве воз5 можного объяснения особенностей фотосинтеза, связанного с выде5 лением кислорода, можно привлечь различия в природе зеленых пиг5

ментов сравниваемых групп организмов. Действительно, хорошо из5 вестно, что пурпурные бактерии, зеленые бактерии и сине5зеленые водоросли обладают отличными друг от друга хлорофиллами, макси5 мумы которых лежат в различных участках спектра:

бактериохлорофилл пурпурных бактерий – у 800, 840–860 и 875–

895 ;

бактериовиридин зеленых серобактерий – у 665–675, 740–750 и

800–810 ;

хлорофилл «а» сине5зеленых водорослей – у 672–674, 680–684,

690–695 ;

Попытка связать различия в энергии квантов, поглощаемых пиг5

ментами, с приобретением механизма фотолиза воды казалась допу5 стимой, поскольку разница энергии в 10 ккал (в области 860 квант характеризуется энергией порядка 30 ккал, в области 680 — 40 ккал) может оказаться достаточной для обоснования возможности фотолитического процесса у растений.

Так, если зеленые пигменты при освещении «поднимают» электрон пропорционально энергии поглощенного кванта, то можно было бы ожидать, что их уровни возбуждения заметно разнятся между собой и что у бактерий энергии для фотолиза воды не хватает. Молекулы хло5 рофилла, поглотившие квант света, переходят в возбужденное состоя5 ние с временем жизни 10514–1015 сек (рис. 2), что делает маловероятной возможность использования организмом этой энергии за столь корот5 кий промежуток времени. После рассеивания части энергии поглощен5 ного кванта в виде тепла молекула хлорофилла переходит в свое основное возбужденное состояние (синглетный уровень возбуждения –

58 59

S1) с временем жизни порядка 10

–10

сек, достаточным для моби5

лизации энергии возбуждения организмами (рис. 2).

Рис. 1. Спектры поглощения пурпурных (1) и зеленых (2) бактерий, водорослей и высших растений (3)

Рис. 2. Схема возбуждения молекулы хлорофилла (объяснения в тексте)

 

Показателем синглетного уровня возбужденной молекулы хлоро5 филла служит спектр флуоресценции. При флуоресценции молекула возвращается в стабильное невозбужденное состояние S благодаря ис5 пусканию кванта света, соответствующего переходу S1 S. Поэтому

максимум флуоресценции интактных клеток фотосинтезирующих орга5

низмов всегда определяет реально существующий уровень возбужде5 ния, энергия которого может быть использована живой клеткой.

Если бы синглетный уровень возбуждения хлорофилла являлся

 

 

 

следствием исключительно качества поглощенного света, то можно бы5 ло бы ожидать при постоянном тепловом рассеивании сохранения аб5 солютных различий в синглетных уровнях сравниваемых пигментов. На самом деле в молекулах между максимумами поглощения и флуо5 ресценции постоянного соответствия нет, как можно видеть из приве5 денных выше спектров флуоресценции различных хлорофиллов. У бактериохлорофилла максимум флуоресценции in viva наблюдается в области 920 , у бактериовиридина — в области 690 , у хлорофилла «а» – в области 680–685 .

 

Флуоресценция бактериохлорофилла в области 920 указывает

на сравнительно низкую эффективность фотохимического аппарата у пурпурных бактерий, что может быть привлечено для подтвержде5 ния положения о недостаточности энергии поглощенного кванта для фотолиза воды. Однако максимумы флуоресценции бактериовири5 дина и хлорофилла «а» близки друг другу (690 и 680 соответ5 ственно), и, следовательно, уровни возбуждения молекул срав5 ниваемых пигментов не могут объяснить различий между фотосин5 тезом осуществляемым зелеными бактериями с окислением соеди5 нений серы, и фотосинтезом растений с выделением кислорода. Несомненно, что в обоих случаях энергии достаточно для фотолиза воды, и отсутствие выделения кислорода организмами, содержащи5 ми бактериовиридин, вызвано какой5то другой причиной.

Последняя может быть связана с реакционной активностью воз5 бужденной молекулы пигмента, с ее способностью отдачи электронов другим биохимическим системам, мерой которой является окисли5 тельно5восстановительный потенциал. Измерение окислительно5вос5 становительных потенциалов зеленых пигментов в метаноле, проведенное Годхиром и др. (Goedheer, Hoveus de Haas, Schuller,

1958), показало, что склонность вступать в реакции сближает бакте5 риовиридин скорее с бактериохлорофиллом, чем с хлорофиллом «а». Так, величины окислительно5восстановительных потенциалов бакте5 риохлорофилла и бактериовиридина равны 550±2 и 550+10 mv соот5 ветственно, в то время как у хлорофилла «а» он равен 645+20 mv, а у хлорофилла «в» – 680 ±25 mv. Однако следует подчеркнуть, что окислительно5восстановительные потенциалы пигментов в растворе, хотя и свидетельствуют о вероятных различиях их химического со5 става и фотохимической активности in vitro, тем не менее они ничего

не говорят об истинном положении вещей in vivo, когда взаимодей5 ствие между собой отдельных молекул пигмента, связанное с их струк5 турно5пространственной ориентацией, спецификой взаимодействия с другими биохимически и биофизически активными системами, мо5 жет полностью изменить картину их участия в окислительно5восста5 новительных реакциях.

Тем не менее «промежуточное» положение, занимаемое бактери5 овиридином между хлорофиллом «а» и бактериохлорофиллом, как будто подтверждается влиянием хинона на флуоресценцию различ5 ных хлорофиллов в органических растворителях: с увеличением кон5 центрации хинона флуоресценция зеленых пигментов в растворах метанола сильнее всего падает у хлорофилла, слабее – у бактерио5 виридина и слабее всего – у бактериохлорофилла (Goedheer, 1958).

Вторая фотохимическая реакция фотосинтеза и фотолиз воды

По мнению многих исследователей, фотосинтез растений являет5 ся следствием двух отдельных фотохимических реакций, каждая из которых требует присутствия особого фотоактивного пигмента.

Все существующие фотосинтезирующие организмы, за возмож5

ным исключением Xanthophyceae, содержат более чем один пигмент, поглощающий свет (у фотосинтезирующих бактерий – хлорофиллы и каротиноиды, у сине5зеленых водорослей – хлорофилл «а» и фико5 билины). Кроме того, показано, что хлорофиллы присутствуют в клет5 ках живых организмов в различных состояниях, каждое из которых характеризуется определенной степенью агрегации отдельных моле5 кул, сдвигающей максимумы поглощения различных форм одного пиг5 мента в сторону инфракрасной области спектра (Красновский с сотр.,

1952, 1955; French, 1958, 1959). При этом максимумы различных форм

 

бактериохлорофилла различаются между собой на 40–50 (Wassink a. oth., 1939), бактериовиридина – на 60–80 (Красновский, Пакшина, 1959; Красновский, Ерохин, Федорович, 1960) и хлоро5 филла «а» – на 10–12 , (French, Towner a. oth., 1954).

Наконец, существуют доказательства того, что не только различ5 ные пигменты, но и различные формы одного пигмента выполняют в фотосинтетическом процессе различные, строго определенные функ5 ции. Так, еще в 1950 г. Хексо и Блинке (Нахо, Blinks, 1950) обнару5 жили, что свет, поглощенный хлорофиллом в красной области, малоэффективен для фотосинтеза Cyanophyta и Rhodophyta по срав5 нению со светом, поглощенным фикобилиновыми пигментами. Одна5 ко дополнение светом другой волны, поглощаемой вторым пигментом, доводит фотосинтез до эффективности, которая наблюдается при осве5 щении белым светом. Таким вторым («сопровождающим») пигмен5

том могут быть хлорофилл «в», фикобилины, фукоксантин (каро5 тиноид) или, наконец, одна из форм хлорофилла «а», поглощаю5 щая у 670 а (French, I960). Эти наблюдения, подкрепленные Френчем и Фоком (1961), которые нашли, что эффект совместного действия двух различных длин волн можно разделить во времени, послужили основанием для утверждения, согласно которому эф5 фект усиления светом более короткой волны связан с участием в фотосинтезе двух фотореакций.

Рис. 3. Выделение кислорода по Френчу и Фоку (1961). (Объяснения в тексте)

Однако у фотосинтезирующих бактерий (Арнон, 1961), некото5 рых Xanthophyceae (Emerson, Cnalmers, Cederstrand, 1957; Нахо,

1960) и Chrysophyceae (Аллен, 1961) не удалось обнаружить влия5 ния дополнительного света на спектр действия фотосинтеза, что, по5видимому, следует расценивать как доказательство отсутствия второй фотохимической реакции у изученных организмов.

Исследование продуктов двух фотореакций было проведено Френ5 чем и Фоком (1961). Изучая увеличение дыхания в темноте после предварительного освещения и скорости образования кислорода при освещении различным светом красной водоросли Porphyridium cruen5 tum, Френч и Фок показали, что спектр действия стимуляции дыха5 ния совпадает со спектром поглощения хлорофилла, тогда как спектр действия выделения кислорода определяется фикоэритрином (рис. 3).

 

Так, на рис. 3 видно, что освещение зеленым светом (570 ) резко стимулирует выделение кислорода, но в ходе последующего затемнения заметной стимуляции дыхания не происходит. Наобо5 рот, при освещении красным светом (695 ) кислород выделяется значительно слабее, но именно в этот период накапливается что5то такое (ПН5Н?), что расходуется в ходе последующего темнового периода, вызывая сильную стимуляцию дыхания.

Далее, изучение фотохимических реакций с помощью электронно5 го парамагнитного резонанса (ЭПР) показало, что у пурпурных бак5 терий и сине5зеленых водорослей при освещении возникает сигнал ЭПР в виде простого пика, который уменьшается до нуля при вык5 лючении света. В зеленых водорослях затухание сигналов ЭПР в темноте подчиняется более сложному закону: одна компонента зату5 хает быстро, как у бактерий и сине5зеленых водорослей, тогда как другая затухает гораздо медленнее (Sogo, Jost, Calvin, 1959; Allen, Piette, Murchio, 1962). В медленно затухающем спектре ЭПР замет5 ны 6 полос, принадлежащих Мп и исчезающих при обработке клеток цианидом или ЭДТА, после чего спектр ЭПР зеленых водо5 рослей становится сходным с таковым у бактерий и Gyanophyta. При5 мечательно, что у пурпурных бактерий, как и у сине5зеленых водо5 рослей, полосы Мп в спектре ЭПР отсутствуют (Аллен, 1961).

Итак, в фотохимическом аппарате фотосинтезирующих бактерий,

сине5зеленых водорослей и всех прочих фотосинтезирующих орга5 низмов можно отметить следующее.

1. Зеленые пигменты (бактериохлорофилл, бактериовиридин,

хлорофилл «а») участвуют, по5видимому, в одной фотореакции, об5 щей для фотосинтезирующих аппаратов всех сравниваемых орга5 низмов (см. реакцию 6), которая образует продукт, используемый в дыхании (вероятно, ПН5Н).

2. Сопровождающие пигменты участвуют в другой образующей

непарный электрон фотореакции, которая ответственна за выделение кислорода из воды. Удаление тем или иным способом сопровождаю5 щего пигмента (каротина) прекращает реакцию Хилла, которая, од5 нако, восстанавливается при добавлении каротина (French, 1959). Помимо этого, по данным Сейджер (Sager, 1959), бледно5зеленый мутант Chlamydomonas, содержащий следы каротиноидов, погибает при выращивании на свету. Создается впечатление, что каротинои5 ды помимо своей защитной антиокислительной функции (Stanier,

1959), не принимая непосредственного участия в фотосинтезе (Sager,

1959),– точнее в акте фотолитического расщепления воды, – тем не менее поставляют необходимую энергию для этой реакции, осуще5 ствляемой, возможно, одной из форм зеленого пигмента, что в об5 щем5то хорошо согласуется с установленным Duysens (1952) фактом передачи хлорофиллу энергии, поглощенной каротиноидами.

3. Отсутствующая у фотосинтезирующих бактерий вторая фоторе5 акция впервые появляется в ходе эволюционного совершенствования фотохимического аппарата у сине5зеленых водорослей. Однако меха5 низм, освобождающий кислород из воды у Cyanophyta, очевидно, не5 достаточно совершенен (в выделении кислорода не участвует Мn++), что обусловливает в определенных условиях возможность «возвра5 та» сине5зеленых водорослей к бактериальному типу фотосинтеза.

 

4.Вторая фотореакция снабжает организм энергией, достаточной для фотолитического расщепления воды. Образование радикала из иона гидроксила требует 1,4 эв, что эквивалентно 32 ккал, – энергии, доставляемой поглощением кванта сопровождающим пиг5 ментом.

(10) Освобожденный электрон передается через какие5то переносчи5

ки к фотоокисленному цитохрому, в ходе чего осуществляется воз5

можность перехода кинетической энергии его движения в статическую энергию эстерной фосфатной связи.

Для бактерий дополнительной фотореакции не требуется, так как фотоокисленный цитохром является достаточно сильным окислите5 лем по отношению к окисляемым соединениям серы (сем. Chlorobacteriaceae и сем. Thiorhodaceae), чтобы создать необходи5 мую разность потенциалов для движения электронов по пути

У представителей сем. Athiorhodaceae при наличии соответству5 ющих дегидраз, активирующих водород органических соединений (Н2А), в сущности имеет место открытый наружу клетки «шунт», напоминающий перевернутую на 180° дыхательную цепь.

В заключение можно отметить, что рассматриваемый выше меха5 низм фотосинтеза растений точно соответствует установленному фак5 ту, что выделение одной молекулы кислорода требует 8 актов поглощения света и 4 молекулы Н2О. Согласно схеме, поглощение первого кванта вызывает электронный сдвиг между цитохромом и пиридин5нуклеотидом (реакция 6), тогда как поглощение второго кванта приводит к восстановлению фотоокисленного цитохрома и образованию радикала ОН (реакции 10 и 9). Повторение указан5 ных двух актов поглощения квантов обеспечивает образование вто5 рого радикала ОН и дает им возможность проре5комбинировать с образованием перекиси водорода. Последующие 4 кванта приводят к образованию второй молекулы Н2О2, что позволяет рассматривать выделение кислорода как процесс разложения двух молекул пере5 киси с образованием молекулярного кислорода и воды.

Заключение

Анализ существующих данных говорит о постепенном усложне5 нии фотосинтетического аппарата, которое привело к возникнове5 нию у сине5зеленых водорослей в ходе эволюции дополнительной световой реакции, связанной с фотолитическим разложением воды

и выделением молекулярного кислорода. У пурпурных и зеленых бактерий фотосинтетический процесс зависит от наличия в среде соединений, биохимическая мобилизация которых не требует значи5 тельных предварительных затрат энергии. Поэтому фотосинтезиру5 ющие бактерии осуществляют только одну фотохимическую реакцию, ответственную за образование восстановителя, который в принципе может дать всю энергию, необходимую для процессов синтеза раз5 нообразных клеточных компонентов. Замена в ходе эволюции фо5 тосинтеза донора электронов, необходимых для восстановления фотохимически окисленных цитохромов, способствовала ликвида5 ции зависимости фотосинтетического процесса от внешних дефи5 цитных соединений (органические субстраты, окисляемые соединения серы), что позволило растениям, окисляющим воду, оттеснить фо5 тосинтезирующие бактерии в скромные по масштабам экологичес5 кие ниши и завоевать воду и сушу.

Из всего вышеизложенного нельзя, конечно, заключить, что сине5

зеленые водорос=’mso-spacerun:yes’> молекулы кислорода требует 8 актов поглощения света и 4 молекулы Н2О. Согласно схеме, поглощение первого кванта вызывает электронный сдвиг между цитохромом и пиридин5нуклеотидом (реакция 6), тогда как поглощение второго кванта приводит к восстановлению фотоокисленного цитохрома и образованию радикала ОН (реакции 10 и 9). Повторение указан5 ных двух актов поглощения квантов обеспечивает образование вто5 рого радикала ОН и дает им возможность проре5комбинировать с образованием перекиси водорода. Последующие 4 кванта приводят к образованию второй молекулы Н2О2, что позволяет рассматривать выделение кислорода как процесс разложения двух молекул пере5 киси с образованием молекулярного кислорода и воды.

Заключение

Анализ существующих данных говорит о постепенном усложне5 нии фотосинтетического аппарата, которое привело к возникнове5 нию у сине5зеленых водорослей в ходе эволюции дополнительной световой реакции, связанной с фотолитическим разложением воды

и выделением молекулярного кислорода. У пурпурных и зеленых бактерий фотосинтетический процесс зависит от наличия в среде соединений, биохимическая мобилизация которых не требует значи5 тельных предварительных затрат энергии. Поэтому фотосинтезиру5 ющие бактерии осуществляют только одну фотохимическую реакцию, ответственную за образование восстановителя, который в принципе может дать всю энергию, необходимую для процессов синтеза раз5 нообразных клеточных компонентов. Замена в ходе эволюции фо5 тосинтеза донора электронов, необходимых для восстановления фотохимически окисленных цитохромов, способствовала ликвида5 ции зависимости фотосинтетического процесса от внешних дефи5 цитных соединений (органические субстраты, окисляемые соединения серы), что позволило растениям, окисляющим воду, оттеснить фо5 тосинтезирующие бактерии в скромные по масштабам экологичес5 кие ниши и завоевать воду и сушу.

Из всего вышеизложенного нельзя, конечно, заключить, что сине5

зеленые водоросcerun:yes’> 8. Изд5во АН СССР, М.

Брин Г. П., КрасновскийА. А. 1959. «Биохимия», 24.

Виноградов А. П., Тейс Р. В. 1941. «Докл. АН СССР», нов. серия, 33,

№ 9.

Гаффрон Г. 1961. В кн.: «Тр. V Междунар. биохим. конгресса». Сим5 позиум VI, вып. 8. Изд5во АН СССР, М.

Гудвин Т. В. 1961. В кн.: «Тр. V Междунар. биохим. конгресса». Сим5 позиум III, вып. 5. Изд5во АН СССР, М.

Гусев М. В. 1961. «Микробиология», 30, вып. 6. Кондратьева Е. Н. 1961. «Микробиология», 30, вып. 2. Красновский А. А. 1960. «Усп. химии», 29.

Красновский А. А. 1961. В кн.: «Тр. V Междунар. биохим. конгресса». Симпозиум VI, вып. 2. Изд5во АН СССР, М.

Красновский А. А., Брин Г. П. 1949. «Докл. АН СССР», нов. серия,

67, № 2.

Красновский А. А., Брин Г П., Войновская К. К. 1949. «Докл. АН СССР», нов. серия, 69, № 3.

Красновский А. А., Войновская К. К 1949. «Докл. АН СССР», нов. серия, 66, № 4.

Красновский А. А., Войновская К. К., Кособуцкая Л. М. 1952. «Докл. АН СССР», нов. серия, 85, № 2.

Красновский А. А., Ерохин Ю. Е., Федорович И. И. 1960. «Докл. АН СССР», нов. серия, 134, № 5.

Красновский А. А., Кособуцкая Л. М. 1955. «Докл. АН СССР», нов. серия, 104, № 3.

Красновский А. А., Пакпгина Е. В. 1959. «Докл. АН СССР», нов. серия, 127, № 4.

Френч К. С., Фок Д. К. 1961. В кн.: «Тр. V. Междунар. биохим. конгресса». Симпозиум VI, вып. 2. Изд5во АН СССР, М.

Чанс Б., Нишимура М. 1961. В кн.: «Тр. V Междунар. биохим. конг5 ресса». Симпозиум VI, вып. 6. Изд5во АН СССР, М.

Allen М. В., Piette L. H., Murchio J. С. 1962. «Proc. Third Internal. Congr. Photobiol.», Elsevier, Amsterdam.

Arnon D. I. 1959. «Nature», 184.

Dougherty E. C., Allen M. B. 1960. In: «Compar. Biochem. of Photo5 reactive Pigments». Acad. Press, N. Y. and London.

Duysens L. M. N. 1952. Tpansfer of excitation energy in photosynthesis. Doctoral thesis. Utrecht.

Duуsens L. M. N. 1954a. «Nature», 173. Duуsens L. M. N. 1954b. «Science», 120. Duуsens L. M. N. 1955. «Science» 121.

Duysens L. M. N. 1957. In: «Res. in Photosynthesis», N. Y.

Duysens L. M. N. 1959. «Brookhaven Symp. Biol.», II. The Photochem. apparatus, its structure and function.

Duysens L. M. N., Sweep G. 1957. «Biochim. et biophys. acta», 25.

Emerson R., Chalmers R., Cederstrand С 1957. «Proc. Nat. Acad. Sci. U. S. A», 43.

French C. S. 1958. «Proc. 195th Ann. Biol. Collog.», Corvallis, Oregon.

French C. S. 1959. «Brookhaven. Symp. Biol.», II. The Photochem. apparatus, its structure and function.

French C. S. 1960. Chapter in: «Compnr. Biochem. of Photoreactive

Pigments», Acad. Press, N. Y. and London.

Frenсh C. S., Тоwner G. H., Вellis D. R., Сооk R. M., Fair W. R., Hоll W. W.

1954. «Rev. Scient. Instrum.», 25.

Frenkel A. W. 1958. «J. Amer. Chem. Soc.», 80.

Frenkel A. W, 1959. «Brookhaven Symp. Biol.», II, The Photochem. apparatus, its structure and function.

Geitler L., Pascher A. 1925. In: «Susswasserflora», Cyanochlorodinae5

Chlorobacteriaceae, II. Jena.

Goedheer J. C. 1958. «Biochim. et biophys. acta», 27.

Goedheer J. C, H о veu s de H a a s G. H., SchullerP. 1958. «Biochim. et biophys. acta», 28.

Haxo F. T. 1960. Chapter in: «Compar. Biochem. of Photoreactive Pig5

ments», Acad. Press, N. Y. and London.

Haxо F. Т., Вlinks L. R. 1950. «J. Gen. Physiol.», 33.

Kluyver A. J., Donker H. J. 1926. «Chem. Zelle u. Gewebe», 13. Kylin H. 1944. «Kgl. fysiogr. salskap, Lund Forhandl.», 13, (1943). Nakamura H. 1938. «Acta Phytochim». (Japan), 10.

Nis’himura M. 1962. «Biochim. et biophys. acta», 57.

Ogata S., Nozaki M., Arnon D. I. I960. Chapter in: «Compar. Bio5chem. of Photoreactive Pigments», Acad. Press, N. Y. and London.

Pringsheim E. Q. 1949. «Bacteriol. Revs.». 13. Pringsheim E. Q. 1953a. «Nature», 172. PringsheimE. Q. 1953b. «Arch. Mikrobiol.», 19.

Ruben S., Randall M., Кamen M., HydeJ. 1941. «J. Amer. Chem. Soc.», 63.

Sager R. 1959. «Brookhaven Symp. Biol.», II. The Photochem. apparatus, its structure and function.

Sistrom W. R., Griffiths M., Stanier R. Y. 1956. «J. Cellular and Compar.

Physio!.», 48.

Smith L. 1957. In: «Res. in photosyntesis». Internat. sci. Publ. N. Y.

Smith L. 1959. «J. Biol. Chem.», 234.

Sоgо P., J о s t M., Calvin M. 1959. «Radiation Research», Suppl. I.

Stanier R. Y. 1959. «Brookhaven Symp. Biol.», II. The Photochem. apparatus, its structure and function.

Stanier R. Y., Соhen! Bazire G. 1957. «75th Sympos. Soc. Gen. Microbiol.»,

Cambridge.

Van Niel C. B. 1931. «Arch. Mikrobiol.», 3, H. 1.

Van Niel C. B. 1935. «Cold Spring Harbor Symposia», 3.

Van Niel C. B. 1941. «Advances Enzymol.», 1.

Van Niel C. B. 1949a. «Amer. Scientist», 37.

Van Niel C. B. 1949b. In: «Photosynthesis in plants», Jowa State College

Press.

Van Niel С. В. 1956. In: «The microbe’s contribution to biology», by A. J. Kluyver and С. В. Van Niel. Harward Univ. Press. Cambridge, Massachusetts.

Vernоn L. P. 1968a. «J. Biol. Chem.», 233.

Vernon L. P. 1958b. «75th Internat. Congr. Microbiol.», Stockholm. Abstracts of communications, 5k.

Vernon L. P. 1959a. «Biochim. et biophys. acta», 32.

Vernоn L. P., 1959b. «J. Biol. Chem.», 234.

Vernоn L. P., A s h О. К. 1959. «J. Biol. Chem.», 234.

Vishniac W., Ochoa S. 1952. In: «Symposium on Phosphorus metabolism», 2, Johns Hopkins Univ. Press, Baltimore, Md.

Vishniac W., Ochoa S. 1952a. «J. Biol. Chem.», 195.

Wassink E. С., Кatz E., Dоrrestein R. 1939. «Enzymologia», 7.

В сб. «Биология сине)зеленых водорослей», 1964.

Материал взят из: Изменения в природных биологических системах — В. Д. Федоров