БИОХИМИЧЕСКАЯ ЭВОЛЮЦИЯ С ПОЗИЦИЙ МИКРОБИОЛОГА

В последние годы эволюционная биохимия завоевала прочное место в ряду проблем, горячо обсуждаемых с позиций различных специальностей. Попытка взглянуть на биохимическую эволюцию глазами микробиолога оправдана присущим микробиологии знани5 ем необыкновенного разнообразия процессов энергетического рас5 пада субстратов и специфики конструктивных процессов синтеза, осуществляемых различными группами микроорганизмов.

В последующем изложении полностью исключены из рассмотре5 ния вопросы эволюции функциональной биохимии, биохимии регу5 лирующих механизмов, биохимии наследственности и т. д. Термин

«биохимическая эволюция» в рамках настоящей работы относится только к возникновению и совершенство, ванию ферментных сис5 тем, участвующих в процессах энергетического распада субстратов и биохимической мобилизации соединений, необходимых для син5 теза клеточных компонентов.

I

Благодаря успехам биохимии и физиологии стало известно, что пути синтеза и распада отдельных соединений в бактериальных, рас5 тительных и животных клетках поразительно напоминают друг дру5 га. Однако в течение последних лет развитие знаний, главным образом в области биохимии одноклеточных, указало на существование мно5 гочисленных отклонений от «единого плана» биохимической органи5 зации как принципиального, так и непринципиального характера.

Среди исследователей утвердилась мысль о возможности связать

обнаруженные черты биохимической индивидуальности с эволюци5 онной идеей. Действительно, если биохимические различия связа5 ны с высотой клеточной организации, то способность (или нес5 пособность) к превращениям тех или иных соединений может слу5 жить объективным признаком для эволюционно5биохимической си5 стематики. Возможность построения эволюционной систематики особенно необходима микробиологам, которые из5за примитивной морфологической организации одноклеточных часто затрудняются установить истинное таксономическое положение отдельных групп микроорганизмов. Теперь микробиологи, располагая сведениями об удивительном физиолого5биохимическом разнообразии одноклеточ5 ных, получили возможность искать то общее, что сближает отдель5 ные группы микроорганизмов, и то частное, что разобщает их.

С другой стороны, микробиологи получили право голоса и в ре5

шении вопроса о путях биохимической эволюции на Земле благода5 ря особенностям, присущим царству микроорганизмов в целом.

Во5первых, некоторые группы организмов осуществляют процессы энергетического распада и синтеза клеточных компонентов подобно таковым растительных и животных клеток. Во5вторых, некоторые группы микроорганизмов осуществляют процессы, которые не под силу животным и растительным клеткам, что указывает на большее разнообразие набора ферментных систем в мире одноклеточных. И, в5третьих, некоторые группы микроорганизмов неспособны осуще5 ствлять процессы, которые свойственны растительным и животным клеткам, что указывает на существование одноклеточных бактерий, не располагающих полным набором присущих растительным и жи5 вотным клеткам ферментных систем.

Если допустить, что уровень биохимической организации опреде5 ляется всей совокупностью процессов, которые способна осуществ5 лять клетка, и что это, в свою очередь, является показателем эво5 люционной высоты ее организации, то существует возможность ил5 люстрировать пути развития прогрессивной биохимической эволю5 ции нашей планеты конкретными примерами из физиологии и биохимии одноклеточных организмов. Более того, стоит только при5 знать, что, например, анаэробные бактерии являются реликтовыми формами, подобием тех организмов, которые жили миллионы лет назад и сохранились благодаря экологическим нишам, как тотчас вырисовывается общее направление эволюционного процесса, кото5 рый привел к созданию полноценного в. биохимическом смысле од5 ноклеточного организма (хемо5 или фотоавтотрофа). Но прежде чем перейти к изложению некоторых общих принципов, определивших направление биохимической эволюции, рассмотрим ряд известных положений, необходимых нам для дальнейшего положения.

1. ПЕРВИЧНЫЕ ПРИМИТИВНЫЕ ОРГАНИЗМЫ ВОЗНИКЛИ В СЛОЖНОЙ СРЕДЕ

Это положение, высказанное впервые акадeмиком А. И. Опариным в 1922 г. и детально развитое в его многочисленных последующих публикациях, получило широкую известность и признание особенно после Международного симпозиума по происхождению жизни, состо5 явшегося в 1957 г. в Москве. В настоящее время сколько5нибудь серь5 езные доводы и возражения, способные скомпрометировать его, отсутствуют. Единственно «узкое место» опаринского положения – абиотическое возникновение химически сложной органической среды на Земле – может быть с успехом преодолено, если мы, примем краси5 вую и правдоподобную гипотезу о химической эволюции на Земле, которая предшествовала возникновению первичного организма. Прав5 да, мы не знаем еще доподлинно, какими конкретными путями шла химическая эволюция, но принципиальная ее возможность была показана блестящими исследованиями С. Миллера (1957).

2. ПРОСТОТА БИОХИМИЧЕСКОЙ ОРГАНИЗАЦИИ СВОБОДНОЖИВУЩИХ ОРГАНИЗМОВ ЭВОЛЮЦИОННО ПЕРВИЧНЕЕ

Это положение кажется довольно очевидным, однако из него выте5 кает важное для последующего изложения следствие, на, которое нужно обратить внимание: всякое усложнение ферментных систем свободно5 живущих организмов трактуется как эволюционно более позднее при5 обретение и, следовательно, как эволюционный шаг вперед.

С другой стороны, необходимо подчеркнуть, что с точки зрения эволюции первичность простоты рассматривается применительно к свободноживущим формам, и только к ним. Действительно, органи5 зация риккетсий довольно примитивна по сравнению с бактериями. Однако простота их биохимической организации еще не указывает на первичность происхождения, так как она возникла вторично как результат крайне специализированного паразитизма, в результате которого была утрачена часть собственных ферментных систем. Рик5 кетсий живут и размножаются только в хозяине и, следовательно, они могли возникнуть либо позже хозяина, либо, по крайней мере, одновременно (параллельно) с ним.

Все сказанное о риккетсиях в той или иной степени справедливо

и по отношению ко веем паразитическим организмам, которых важ5 но сразу же исключить из рассмотрения как специализированные формы,, возникшие вторично и поэтому бесполезные для понима5 ния путей прогрессивной биохимической эволюции на Земле. Прав5 да, в силу этих же соображений весь мир животных следует тоже признать «паразитическим», поскольку они живут за счет других организмов – растений, и приобрели некоторые черты типичных паразитов. Так, животные утратили некоторые системы, свойствен5 ные низшим организмам (например, способность синтезировать оп5 ределенные аминокислоты и витамины), так как они получали продукты этих систем вместе с растительной пищей. В то же время мир животных не приобрел никаких новых ферментных систем (уча5 ствующих в реакциях энергетического распада субстратов и моби5 лизации соединений, необходимых для синтеза клеточных компонен5 тов), способных удивить биохимика и позволяющих рассматривать их с биохимической точки зрения как более совершенные организ5 мы. Таким образом, мысль о том, что биохимическая эволюция на нашей планете завершилась созданием «биохимически полноценно5 го» одноклеточного организма (фото5 или хемоавтотрофа), нельзя считать слишком парадоксальной.

Однако это положение порождает видимость, что венцом эволю5 ционного развития является одноклеточный свободноживущий фото5 и хемоавтотроф. Надо иметь мужество признать, что если мы имеем

в виду биохимическую эволюцию, то дело обстоит действительно так. Поэтому не следует искать прогрессивную биохимическую эво5 люцию свободноживущих форм там, где ее нет, как это настойчиво делает Флоркин (Флоркин, 1947; Florkin, 1960).

Тем не менее вышесказанное не противоречит тому, что мир жи5 вотных является несравненно более высокоорганизованным, чем мир одноклеточных организмов. Видимость парадокса становится оче5 видной, если признать, что мир животных является результатом эволюции не только биохимической. Когда однажды две дочерние клетки, сохраняя целостность индивидуального организма, начали выполнять разные функции (иначе говоря, специализировались) – это ознаменовало новый, более высокий этап эволюции (может быть, ее, следует назвать биологической эволюцией в дарвиновском по5 нимании), который включил в себя эволюцию биохимическую как необходимый плацдарм для следующей более высокой ступени орга5 низации свободноживущих организмов. Таким образом, можно пред5 ставить себе, что эволюция биологическая включила в себя эволюцию биохимическую, совершенно аналогично тому, как биохимическая эволюция включила химическую, а последняя в свою очередь – атом5 ную, и каждому этапу соответствует свой уровень интеграции раз5 вивающейся материи (Pirie, 1937).

При рассмотрении биохимической организации первичных орга5 низмов важно подчеркнуть их основную черту – минимум биосинте5 тической способности, связанной с ограниченным набором ферментных систем, участвующих в реакциях клеточного синтеза. Однако любой живой организм всегда характеризуется и другой стороной биохими5 ческой активности – способностью осуществлять процессы окисли5 тельно5восстановительного распада субстратов, в ходе которых освобождается энергия, необходимая даже для простейших реакций синтеза. Эти процессы, объединенные микробиологами под терми5 ном «энергетические», носят более или менее ярко выраженный эк5 зергонический характер: в ходе их при окислении субстрата, или его части выделяется всегда больше энергии, чем при восстановлении другого субстрата или другой его части. Все энергетические процес5 сы первичных организмов осуществлялись по этому типу. Положи5 тельный баланс энергии фиксировался в энергии химической связи фосфорных соединений и переносился посредством сопрягающих механизмов на биосинтетические реакции, что обеспечивало их пуск, Характер и специфика субстратного сопряжения реакций синте5

за клеточных компонентов, с одной стороны, и энергетический рас5

пад эндогенных и экзогенных субстратов, с другой — являются по5 казателем биохимического совершенства сравниваемых организмов. В последующем изложении направление прогрессивной биохими5 ческой эволюции рассматривается с позиций «принципа конверген5

ции». По мнению автора настоящей работы, этот принцип опреде5 лил направление в совершенствовании биохимических механизмов жизни. Хотя положение о конвергенции не слишком очевидно и его нельзя обосновать экспериментально, но выводы, которые вытекают из его признания, кажутся правдоподобными и значительными. Прин5 цип конвергенции, как утверждение, предполагает, следовательно, у первичных организмов существование параллелизма в возникнове5 нии систем, участвующих в биосинтезе, и систем, участвующих в энергетическом распаде субстрата. Далее, как утверждает принцип, в ходе совершенствования систем эволюция сблизила и перепутала их. Единственным условием, решившим проблему биохимической эво5 люции, было то, что химические предшественники биосинтетических реакций оказались идентичными с продуктами окислительно5восста5 новительного распада субстратов.

Вероятно, именно с момента выбора «пути» энергетического распа5 да, который привел к образованию соединений, послуживших суб5 стратами для начальных ферментативных звеньев реакций биосинтеза, выработался конвергентный земной тип метаболизма, в конечном сче5 те определивший общее направление биохимической эволюции как кон5 вергенцию энергетических и конструктивных процессов организма.

Действие принципа конвергенции можно схематически предста5

вить следующим образом. Первые организмы подхватывали энергию разнообразных спонтанно протекающих экзергонических реакций распада органического субстрата. На принципиальную возможность использования энергии случайных экзергонических реакций указы5 вал еще в 1940 г. Ван Ниль (Van Niel, 1940), предлагая в качестве основной гипотезы общей микробиологии положение: «Всякий хими5 ческий процесс, который термодинамически осуществляется с выде5 лением свободной энергии, может быть использован каким5нибудь живым организмом в качестве основного или даже единственного источника удовлетворения его энергетических потребностей».

Из многочисленных случайных реакций экзергонического рас5

пада субстрата отбирались только те, которые в конечном итоге да5 вали соединения, пригодные для пуска биосинтетических реакций. В плане приспособления это было важной тенденцией, определив5 шей становление земного типа обмена веществ, – тенденцией, кото5 рая имела принципиальное следствие: она приводила к меньшей зависимости организма от субстратов окружающей среды, пригод5 ных для биосинтеза клеточных компонентов. Таким образом, орга5 низм приобрел «самостоятельность», так как он все в меньшей степени зависел от органических субстратов окружающей среды и все в боль5 шей степени удовлетворял потребности в «строительных кирпичах», вовлекая промежуточные и конечные метаболиты энергетического распада субстрата в процессе биосинтеза. В свою очередь это стави5

ло организм в зависимость от путей энергетического распада, а сле5 довательно, от химической природы окисляемых соединений. Орга5 низмы стали проявлять склонность к избирательности в отношении к соединениям, вовлекаемым в энергетический распад. Наконец, растущая зависимость процессов синтеза от путей энергетического распада субстрата должна была послужить стимулирующим факто5 ром в приобретении дальнейших звеньев распада. Нижеследующие уравнения реакций (1, 2, 3) дают в буквенных символах упрощен5 ное изображение вышеизложенного.

Допустим, что есть организм с биосинтетической цепью

(1) На каждом этапе синтеза должна затрачиваться энергия – Е,

которая освобождается в ходе окислительно5восстановительного рас5

 

пада субстрата.

(2)

(3) Реакция 3 более выгодна организму, поскольку она имеет компо5

нент Ь, идентичный таковому в реакции 1. Компонент b будет всту5 пать в реакцию 1 и это будет, во5первых, энергетически более выгодно, так как не потребует затраты энергии на пути участка (а b) и, во5 вторых, устранит Потребность организма в компоненте а, который должен присутствовать в окружающей среде. Если данный признак закрепится, то это может привести вообще к утрате способности осуществления реакции (а b), либо к перемещению ее в рецессив. Следствием явится то, что «пусковой» компонент реакций биосин5 теза будет Ь, который зависит исключительно от присутствия орга5 нического субстрата АВ, вовлеченного в энергетический распад,

(4) Если же энергетический распад обогатится еще одним новым зве5

ном, которое совпадает, например, с компонентом с, то это лишь

усилит зависимость биосинтеза от энергетического распада, так как

ключевое положение компонента с в биосинтезе обязательно предпо5 лагает закрепление усложненного пути распада до с, что, в свою очередь, связано с усилением чисто химической избирательности, предъявляемой организмом к пусковому компоненту энергетической реакции АВ.

Разумеется, дело в действительности обстоит много сложнее, но

общую линию – упрощение подготовительных стадий для синтеза необходимого клеточного компонента (например, какой5нибудь ами5 нокислоты) за счет усложнения пути распада энергетического суб5 страта – схема отражает. По5видимому, не случайно в современном организме подготовительный синтез «строительных кирпичей» для пусковых реакций синтеза сведен до минимума и почти полностью покоится на реакциях энергетического распада субстрата. Так, син5 тез важнейших аминокислот достигается уже простым аминировани5 ем и переаминированием сравнительно небольшого числа метаболитов, возникающих в ходе реакций гликолиза, апотомического пути и три5 карбоксилового цикла.

Таким образом, благодаря конвергенции энергетических и кон5

структивных процессов наметилась тенденция к ослаблению зави5 симости биосинтетических потребностей клетки (имеются в виду анаэ5 робные гетеротрофные организмы) от органических субстратов внеш5 ней среды. Специализация по отношению к окружающим субстра5 там также сужала спектр соединений, вовлекаемых в энергетический обмен. В итоге следствием обеих тенденций явилось падение в ходе эволюции степени гетеротрофности анаэробных организмов.

Наконец, важно рассмотреть, в каком направлении могло идти усложнение цепи энергетического распада. Как могли возникнуть новые ферменты, удлиняющие энергетическую цепь?

Возможность абиотического слаженного сопряжения реакций рас5 пада, включающего в себя и эндергонические ступени, как это име5 ет место, например, в гликолизе, мало вероятна. Более правдоподобно допущение, что сложный процесс окислительно5восстановительно5 го распада субстрата, включающий в себя ведомые (эндергоничес5 кие) и ведущие (экзергонические) реакции, мог возникнуть только на базе структурно организованной системы (коацерваты, клетка) (см. Опарин, 1960). При этом возникновение новых ферментных систем, участвующих в распаде субстрата, можно объяснить случай5 ными вариациями биосинтеза предшествующей ферментной систе5 мы, когда химическая непринципиальная вариация в воспроизведении, например, водородпереносящей системы могла создать фермент с иден5 тичной активной группой, но с иным потенциалом, который оказался несколько выше (или ниже) своего «законного» предшественника. Поскольку окислительно5восстановительный распад субстрата свя5 зан с переносом водорода с одного соединения на другое, возникно5

вение водородного акцептора с более высоким окислительно5восста5 новительным потенциалом приведет к удлинению пути пробега Н и освобождению дополнительной порции свободной энергии. При этом, естественно, из случайных отклонений в биосинтезе ферментных систем отбирались методом проб и ошибок только те, перепад энер5 гии между которыми не был слишком велик и был вполне соизме5 рим с величиной энергии макроэргической фосфорной связи (от 4 до 10 ккал), что повышало коэффициент использования выделив5 шейся свободной энергии и в конечном счете привело к созданию и совершенствованию таких систем окислительно5восстановительного распада субстрата как гликолиз, путь Дудорова и т. д.

Мутации биосинтеза ферментов приводили не только к удлине5 нию цепи энергетического распада субстрата, но и к возникновению новых, экономически более выгодных, стадий на старых участках окислительно5восстановительного распада (так называемые обход5 ные пути). Так, например, могли возникнуть путь Дудорова как вариация гликолитического пути или, другой пример, различные пути окисления пировиноградной кислоты у бактерий. Эти обход5 ные пути старых звеньев распада привели к разнообразным биохи5 мическим отклонениям основного конвергентного пути, но к отклонениям непринципиального характера, послужившим матери5 алом для возникновения биохимической индивидуальности; о кото5 рой говорилось выше.

 

В заключение следует обратить внимание на то, что масштаб на5 блюдаемых превращений субстратов, вовлекаемых в энергетический распад у ныне живущих организмов, также является эволюционным показателем уровня биохимической организации одноклеточных, Дей5 ствительно, чтобы получить достаточное для синтеза количество, энер5 гии примитивный организм с «короткой» энергетической цепью должен увеличить масштаб реакций 2 или 3. В этом случае ограниченность воздействия на субстрат (например, С6 2С3) является причиной

того, что для получения определенного количества энергии необхо5

димо подвергнуть распаду большее число единиц субстрата.

 

С появлением новых звеньев ферментативной цепи, удлиняю5 щих путь энергетического распада субстрата, из того же соединения (например, С6 2Сз + C2 + C3 + C1) организм освобождает больше

энергии, и видимый масштаб распада С6 падает. Поэтому бродиль5

ные организмы с минимальным выходом энергии от сбраживания

одной молекулы сахара превращают в несколько раз больше суб5 страта при пересчете на одну клетку, чем аэробные организмы, окис5 ляющие сахар полностью до углекислоты и воды. Следовательно, можно ожидать, что чем примитивней организм, чем короче его энер5 гетическая цепь, тем больше масштаб наблюдаемых превращений ок5 ружающих субстратов.

III

В последующем изложении предпринята попытка проиллюстри5 ровать кратко и в самых общих чертах действие принципа конвер5 генции на примере эволюционного усложнения биохимической организации отдельных одноклеточных организмов. Связывая эво5 люцию организмов с изменением физических и химических усло5 вий, господствовавших на Земле в различные геологические эпохи, можно вычленить следующие три этапа, соответствующие эволюци5 онно5биохимическим скачкам.

Первый этап – восстановительный, в ходе которого атмосфера (содержащая H2, NH3, CH4, H2S) и Мировой океан, содержащий мно5 жество химических соединений, явились ареной борьбы анаэробных

гетеротрофных организмов за субстраты, необходимые для распада и синтеза клеточного вещества. В ходе первого этапа конвергентная эволюция вырабатывала основной земной тип метаболизма, отбирая из большого числа зкзергонических спонтанно протекающих реак5 ций окружающей среды отдельные звенья, сопрягая их в соответ5 ствии с их потенциалами в сложный рисунок и «погружая» последний в структуры. Преобладал бродильный тип распада субстратов, кото5 рый в конечном счете привел к отбору и закреплению наиболее рас5 пространенной картины распада углеводов – гликолизу,

Было бы неверным с эволюционной точки зрения располагать в последовательный ряд микроорганизмы, сгруппированные в рам5 ках определителей в семейства, подпорядки и порядки. Существую5 щая классификация столь несовершенна, что порой организмы одного вида, но различных штаммов проявляют большие биохимические различия, нежели бактерии разных родов. Так, например, штамм фотосинтезирующей бактерии Rhodopseudomonas palustris, выде5 ленный Накамурой, требует для своего развития обязательное при5 сутствие в среде n5аминобензойной кислоты, в то время как штамм той же Rh. palustris, выделенный Е. Н. Кондратьевой (1963), не нуждается в витаминах. С другой стороны, зеленые серобактерии безусловно различных родов (подвижные Chloropseudomonas и не5 подвижные Chlorobium) обнаруживают способность развиваться на минеральной среде Ларсена (Larsen, 1952), превращая эквимоляр5 ные количества сульфида в сульфат. Правда, Chloropseudomonas способен к фотогетеротрофному развитию, но ведь подавляющее число так называемых, автотрофов при определенных условиях также обнаруживают способность к гетеротрофному росту. Строго гово5 ря, с вынужденного согласия микробиологов, и все определители микроорганизмов построены на принципе: что могут делать бакте5 рии, но не на принципе: что они делают на самом деле?

В силу этого весьма сомнительно выделение в особую группу водородных бактерий, так как это сделано по существу на основа5 нии одного единственного признака: способности с помощью гидро5 геназы активировать Н2 для последующей передачи его с помощью водород электронтранспортных ферментных систем на О2 воздуха. Искусственность подобного вычленения очевидна, так как, во5пер5 вых, гидрогеназная активность в общем широко распространена в мире микроорганизмов и не является уникальной особенностью дан5 ной группы, и, во5вторых, как показали еще опыты Клювера и Мантена (Kluyver, Manten, 1942), водородные бактерии при гете5 ротрофном культивировании утрачивают способность к последую5 щему окислению молекулярного водорода. Получается, что водородные бактерии могут окислять Ш, но как бы не хотят. На5 прашивается мысль, что в ходе выделения бактерий на элективных средах, содержащих молекулярный водород в качестве единствен5 ного окисляемого субстрата, мы имеем дело с вынужденной водо5 родной адаптацией, к которой прибегают некоторые (а возможно, целый ряд) организмы, чтобы не погибнуть. И не потому ли так необычно велика по сравнению с другими автотрофными организ5 мами эффективность свободной энергии при окислении водорода бактериями’ (Baas5Becking a. Parks, 1927), что она указывает в об5 щем на неестественность процесса?

Опасность при развертывании целых таксономических групп микроорганизмов в последовательный ряд вынуждает нас рассмат5 ривать эволюцию как прерывистую, но зато конкретную цепь ус5 ложнений отдельных организмов.

Эволюция анаэробных процессов сбраживания углеводов на протя5 жении многих лет эффективно разрабатывается академиком В. Н. Ша5 пошниковым (1960). Ниже, иллюстрируя принцип конвергенции эволюцией анаэробных бродильных организмов, использованы цен5 тральные моменты схемы основных типов сбраживания углеводов, предложенной В. Н. Шапошниковым еще в 1944 г. (см. Шапошни5 ков, 1960).

Вероятно, наиболее близко стоящим к примитивным организмам по уровню биохимической организации является представитель го5 моферментативных молочнокислых бактерий – Lactobacillus cereale, который расщепляет гексозу на две триозы. Эффективность глико5 литического расщепления, равная 2 молекулам АТФ на молекулу сброженной гексозы, и наши знания о механизме гликолитических стадий позволяют предположить, что гликолиз является чуть ли не древнейшим из известных экзорганических механизмов, снабжаю5 щих клетку энергией

 

С6 2Сз

Последующее расщепление триозы на C2 + C1 является дальней5 шим усложнением энергетической цепи и встречается у гетерофер5 ментатив5ных молочнокислых бактерий рода Laclobacillus.

 

Приобретение способности к окислительной конденсации1 биоз могло быть следующей ступенью усложнения последовательности на пути энергетического распада субстрата C2 + C25 5G4 и далее С3 + C1 встречаясь у маслянокислых (восстановительная конденса5 ция), ацетоно5этиловых (конденсация) и пропионовокислых бакте5 рий (окислительная конденсация) соответственно. При этом нетрудно

убедиться, что степень гетеротрофности вышеперечисленных групп убывает в том же порядке: гомо5, гетероферментативные молочно5 кислые, маслянокислые, ацетон5этиловые, пропионовые бактерии (последние удается культивировать на чисто синтетической среде с добавкой витаминов).

IV

Все бродильные организмы в той или иной степени обладают гид5 рогеназной активностью, которая особенно сильно проявляется в груп5 пе анаэробных Clostridium. Резкая активация гидрогеназной системы у маслянокислых бактерий связана со способностью в ходе броже5 ния выделять водород. Биохимическим следствием обратимости гид5 рогеназной системы, сыгравшим огромную роль в ходе последующей биохимической эволюции на Земле, явилось участие активной гидро5 геназы в азотфиксации: акцептировании Н на молекулярном азоте.

На Пятом Международном биохимическом конгрессе академик А. А. Имшенецкий (1962) сделал лейтмотивом своего выступления идею взаимосвязи гидрогеназной активности и азотфиксирующей способности у микроорганизмов. Принципиальная важность этой идеи становится очевидной, если признать, развивая мысль А. А. Имше5 нецкого, что, во5первых, не случайно все фотосинтезирующие бакте5 рии, осуществляющие фотосинтез с параллельным окислением внешних донаторов электронов, являются азотфиксирующими и, во5 вторых, не случайно все высшие фотосинтезирующие организмы, осуществляющие фотосинтез с выделением молекулярного кисло5 рода, утрачивают или утратили способность к азотфиксации.

Возникновение и совершенствование фотосинтетического аппара5

та явили собой следующий, второй этап (переходный) биохимичес5 кой эволюции, охватывающий изменение газовых компонентов нашей атмосферы вплоть до наступления квазистационарного состояния, оз5 наменовавшего третий этап (окислительный), в ходе которого на Земле возникли условия, благоприятные для биологической эволюции.

Невозможно сказать, какие в действительности пути избрала при5 рода для создания удивительно сложного и слаженного аппарата, расходующего энергию падающих квантов видимого света. Однако

с большой степенью достоверности можно представить, что после возникновения порфиринового кольца, являющегося составной час5 тью металлпорфиринового комплекса важнейших ферментных сис5 тем, открывалась возможность фотосенсибилизации превращений, связанных с переносом электронов. В этом случае возникновение цитохромной системы и ее неэнзиматическое сопряжение с хлоро5 филлом (Smith, 1957) являются звеньями одной цепи с начальным звеном – гидрогеназной системой.

Сравнение положения максимумов поглощения пигментов фото5

синтезирующих бактерий (пурпурных и зеленых) с максимумами поглощения водорослей показывает, что максимумы поглощения пер5 вых как бы раздвинуты за пределы, в которых поглощают вторые. Поскольку положение максимумов поглощения носит приспособи5 тельный характер, фотосинтезирующие организмы вынуждены были разместить видимые максимумы поглощения в широком диапазоне спектральных областей, чтобы избежать жесточайшей конкуренции за свет определенной длины волны, соответствующей максимумам поглощения их хлорофиллоподобных пигментов. Многие низшие организмы приобрели дополнительные пигменты, которые сильно вуалируют расположение основного максимума поглощения зеленого пигмента. Следствием явилось приобретение фотосинтезирующими организмами способности улавливать с помощью дополнительных пигментов свет в очень широкой области спектра и транспортировать полученную таким образом энергию к хлорофиллу. Теснимые конку5 ренцией за свет, фотосинтезирующие организмы смещали максиму5 мы своих хлорофиллоподобных пигментов в новые «свободные» спектральные области, причем в ходе эволюции отбирались из возни5 кающих вариаций в биосинтезе пигмента те варианты, которые по5 глощали в более коротковолновой области и, следовательно, более высокоэнергетические кванты света. Использование более высоких в энергетическом смысле квантов совершенно аналогично тенденции нефотосинтезирующих организмов к приобретению новых звеньев энергетического распада субстрата, поскольку в обоих случаях орга5 низмы получают на нужды клеточного синтеза большие порции энер5 гии. Весьма показательно и то, что с увеличением величины кванта поглощаемого света параллельно падает и способность к гетеротроф5 ному питанию. Так, представители сем. Athiorhodaceae хорошо рас5 тут на средах с различными органическими кислотами, аминокис5 лотами, спиртами, сахарами, альдегидами; спектр соединений, ис5 пользуемых представителями сем. Thiorhodaceae, уже и ограничива5 ется преимущественно органическими кислотами, спиртами и саха5 рами; представители сем. Chlorobacteriaceae рода Chloropseudomonas в ходе фотосинтеза используют вообще сравнительно небольшое чис5 ло органических соединений, причем в отличие от представителей

предшествующих двух семейств гораздо охотнее используют сахар (напоминая растения), нежели органические кислоты (Шапошников и др., 1960); наконец, зеленые бактерии рода Chlorobium лишь с трудом удается заставить в условиях эксперимента использовать орга5 нические вещества (Mechsner, 1957), в то время как на минеральных средах они превосходно растут автотрофно. Таким образом, несмот5 ря на трудность решения вопроса, какие организмы образуют мостик между азотфиксирующими анаэробными гетеротрофными Clostridium и фотосинтезирующими организмами (и тем не менее допуская воз5 можность их близкого родства!), следует признать, что вслед за Rhodopseudomonas в эволюционном ряду могут стоять Chromatium, затем Chloropseudomonas и, наконец, Chlorobium.

Последующий сдвиг максимума зеленого пигмента в коротковолно5

вую сторону сопровождался приобретением способности к выделению молекулярного кислорода в ходе фотосинтеза и потере способности к окислению соединений серы. Это знаменовало собой величайший эво5 люционный скачок, так как именно с момента приобретения способно5 сти обогащать окружающую атмосферу кислородом восстановительная атмосфера Земли стала изменяться в сторону окислительной.

Вероятно, что приобретение нового фотосинтетического аппарата,

освобождающего с помощью энергии света кислород из воды, про5 изошло на уровне сине5зеленых водорослей. Сине5зеленые водоросли являются организмами с примитивной по структуре клеточной органи5 зацией, физиологическая картина которых сохраняет черты эволюци5 онного родства с фотосинтезирующими бактериями (например, способность в анаэробных условиях осуществлять фотосинтез бакте5 риального типа с окислением соединений серы; сохранение способно5 сти к азотфиксации некоторыми видами ностоковых; гетеротрофный фотосинтез, напоминающий фотосинтез зеленых бактерий), Однако несомненный эволюционный шаг вперед сине5зеленых водорослей, связанный с приобретением способности выделять молекулярный кис5 лород, является следствием фотолиза воды (Федоров, 1964).

V

Последующая эволюция связана в основном с приобретением спе5 цифических ферментных систем, участвующих в удлинении цепи пе5 редачи водорода (электрона) при энергетическом распаде субстрата. Возможно, в этом процессе большую роль сыграла система выделения кислорода при фотосинтезе, так как попытка рассмотрения «дыхатель5 ной цепи» как системы, обратной фотосинтетическому выделению кис5 лорода, представляется в настоящее время правомочной.

Появление значительных количеств кислорода в атмосфере при5 вело к возникновению в мире организмов аэробных форм. В био5

химическом плане это привело к использованию О2 с потенциалом

+800 мв в качестве конечного акцептора водорода (Н), освобожда5

ющегося при энергетическом распаде экзогенных и эндогенных суб5 стратов. При этом эволюционное совершенствование субстратной последовательности, остановившись на приобретении циклических систем, полностью расщепляющих органические субстраты до СO2

(цикл Крэбса и его варианты, апотомический путь), пошло в на5

правлении удлинения и усовершенствования водород (электрон) пе5 реносящих систем, сопряженных в цепочки с оптимальным для образования макроэргической связи перепадом энергии между от5 дельными звеньями, что в конечном итоге позволило при переносе одной водородной пары на O2 получать 3–4 моля АТФ.

Можно думать, что циклические совершенные системы, участву5

ющие в энергетическом распаде субстрата, могли быть приобретены уже анаэробными организмами. Кислород атмосферы стимулировал лишь приобретение новых водород (электрон) переносящих систем с возрастающими окислительно5восстановительными потенциалами (уве5 личение числа цитохромов, появление цитохромоксидазы и т. д.) у организмов с весьма различным рисунком энергетического распада субстрата (субстратной последовательности). На базе совершенных циклических систем с большим набором специфических дегидраз, десмолитических и конденсирующих ферментов мог возникнуть тот основной земной тип биохимической организации, на котором смогла базироваться биологическая эволюция в дарвиновском смысле.

На базе несовершенных систем энергетического распада субстра5 тов, свойственных многим микроорганизмам, окислительная атмос5 фера Земли, совершенствуя водород (электрон) переносящие системы, способствовала созданию так называемых «уникальных» систем, су5 ществующих только в мире микроорганизмов и не свойственных ра5 стениям и животным. Таким путем могли возникнуть системы, участвующие в окислении С25соединений (уксуснокислые бактерии),

гексоз (сорбозные бактерии) или, наконец, углеводородов (углеводо5

родокисляющие и метанокисляющие бактерии). Пристройка к древ5 ним и малоспецифическим дегидразам эволюционно очень новых и совершенных окислительных систем при наличии скудного и несо5 вершенного арсенала десмолитических и конденсирующих фермен5 тов в 99 случаях из 100 может объяснить существующую «уникаль5 ность» метаболизма аэробных форм микроорганизмов.

Исходя из вышеизложенного, мы должны считать факультатив5 ных аэробов предшественниками аэробных форм. Так, например, факультативные анаэробы сем. Athiorhodaceae могли дать начало после спонтанной утраты зеленого пигмента таким формам, как Azotobacter (Aronoff, 1957), с одной стороны, и некоторым аэробным серобакте5 риям – с другой. Впрочем, происхождение последних, вероятнее все5

го, полифилитическое: они могли развиться как аэробные ветви орга5 низмов, анаэробно окисляющих соединения серы (от пурпурных серобактерий до сине5зеленых водорослей). Так, Beggiatoa почти определенно находится в родстве с Cyanophyceae.

После того как намечены общие пути биохимической эволюции, можно привести много соображений о родстве отдельных организ5 мов, а иногда и целых групп, на основании сведений, касающихся их структурно5функциональной и биохимической организации. Бе5 зусловно, это лучше сделают специалисты, изучающие химию, био5 химию и физиологию отдельных представителей микромира. И если настоящая работа в какой5то степени поможет установлению эволю5 ционного родства среди «разношерстного» мира микроорганизмов, автор будет считать свой труд оправданным.

Biochemical evolution as viewed by a microbiologist

Summary

Biochemical evolution is considered by the author from the standpoint of a «principle of convergence» which determines the conditions and direction of the perfectionnement of the biochemical mechanisms of life. The principle of convergence implies that in primary organisms a parallelism exists in the appearance of systems involved in biosynthesis and systems involved in the energetic decay of the substrat. From the moment when the «pathway» of energetic decay had been selected a type of metabolism was evolved which ultimately determined the general trend of biochemical evolution as a convergence of energetic and constructive processes performed by a biochemically perfect organism (a photo5 and chemoautotroph).

Литература:

Имшенецкий А. А. 1962. Эволюция биологической функции азота. «Тр. V Междунар. биохим. конгресса (Москва, 10–16/VIII, 1961). Эволюц. биохимия». Симпозиум III. М., Изд5во АН СССР.

Кондратьева Е. Н. 1963. Фотосинтезирующие бактерии. М., Изд5во

АН СССР.

Миллер С. (Miller S.). 1957. Образование органических соединений на пер5 вичной Земле. В сб.: «Возникновение жизни на Земле». М., Изд5во АН СССР.

Опарин А. И. 1957. Доклад на заседании Русского ботанического обще5 ства. Москва, 1922. В кн.: «Возникновение жизни на Земле». М., Изд5во АН СССР. Опарин А. И. 1960. Происхождение жизни. М., Изд5во АН СССР.

Федоров В. Д. 1964. Сине5зеленые водоросли и эволюция фотосинтеза. В сб.: «Биология сине5зеленых водорослей». Изд5во МГУ.

Флоркин М. (Flofkin М;). 1947. Биохимическая эволюция. М., ИЛ.

Шапошников В. Н. 1960. Физиология обмена веществ микроорганиз5 мов в связи с эволюцией функций. М., Изд5во АН СССР.

Шапошников В. Н., Кондратьева Е. Н. и Федоров В. Д. I960. A new species of green sulphur bacteria. «Nature», 187, 167.

Аrоnоff S. 1957. Photosynthesis. «Bot. Rev.», 23, 65.

Baas! Becking L. G. M. a. Parks Q. S. 1927. Energy relations in the metabolism of autotrop’hic bacteria. «Physiol. Rev.», 7, 85.

Florkin M. 1960. Unity and Diversity in Biochemistry, pt. V, ch. HI. Oxford, London, N. Y., Paris, Perg’amon Press.

Кluуver A. J. a Manten. A. 1942. Some observations on the metabolism of bacteria oxidizing5 molecular hydrogen. Antonie van Leeuwenhoek. «J. Microbiol. Serol.», 8, 71,

Larsen H. 1952. On the culture and general physiology of the green sulfur bacteria. «J. Bacteriol», 64, 187.

Mechsner K. 1957. Physiologische und morphologische Untersuchungen on Chlorobakterien. «Arch. Mikrobiol», 26, 32.

Pirie N. W. 1937. The meaninglessness of, the rems life and living. In:

«Perspectives of biochemistry, Cambridge University Press», 12.

Smith L. 1957. The reactions of Rhodospirillum rubrum extract with cytochrome C. In: «Research in photosynthesis, Interscience Publishers». N. Y.

Van Niel С. В. 1940. The biochemistry of microorganisms; an approach to generaland comparative biochemistry. «Publ. Amer. Assoc. Advance Sci», 14, 106.

В сб. «Биология автотрофных микроорганизмов» М., Из)во «МГУ», 1966.

Материал взят из: Изменения в природных биологических системах — В. Д. Федоров